Physiology and pharmacological role of the blood-brain barrier.
نویسندگان
چکیده
The central nervous system (CNS) is a perfectly regulated environment with conditions far different from those in the rest of the organism. Even slight changes in this machinery affect its functioning. The blood-brain barrier (BBB) is the frontier that isolates brain tissues from the substances circulating in the blood vascular system. It is also a diffusion barrier that allows only water and small lipophilic molecules to freely access the brain in accordance with their concentration gradients. Moreover, animal studies have revealed differences in the barrier tightening time-course during development. The BBB becomes resistant to larger molecules before it stops smaller ones. Thus, its maturation has a progressive scheme. A similar scheme is true for BBB transporters. Due to all of these facts, the BBB is the most significant element responsible for the preservation of CNS homeostasis. As a functional system, the BBB can be investigated as a frontier composed of pericytes, astrocytic end feet, and brain endothelial cells (ECs). Special emphasis is placed on the tight junctions (TJs) existing between them. An alternative point of view considers the BBB to be a functional complex consisting not only of bricks of cells but also of structures between those cells and their cofunctioning elements.
منابع مشابه
Neuroprotective Effects of Allicin on Neurological Scores, Blood Brain Barrier Permeability and Brain Edema Following Severe Traumatic Brain Injury in Male Rats: A Behavioral, Biochemical and Histological Study
Background and purpose: Allicin has a wide range of pharmacological functions, all of which can be demonstrated in anti-inflammatory, antioxidant, antifungal and anti-tumor activities. In this research, we investigated the neuroprotective role of allicin in the process of diffuse traumatic brain injury and its effect on interleukin levels and histological changes in rats. Materials and method...
متن کاملEffect of Nesfatin-1 on Permeability of Blood Brain Barrier, Neurological Score and Brain Edema after Traumatic Brain Injury in Male Rats: A Behavioral and Biochemical Study
Background and purpose: Traumatic brain injury (TBI) is one of the most complex diseases of the central nervous system (CNS). Nesfatin is an 82-amino acid effective polypeptide in CNS. In this study, we investigated the role of nesfatin in neuron protection in the process of diffuse concussion in rats and also its effect on the level of matrix metalloproteinase-9. Materials and methods: In thi...
متن کاملP33: The Effect of Boswellia Serrata Extract and AKBA (Acetyl-11-keto-β-Boswellic Acid) on the Neurological Scores, Brain Edema and Brain -Blood Barrier after Severe Traumatic Brain Injury in Male Rats: the Role of IL-1β and IL-10
Boswellia serrataBoswellia serrata has a prominent role in TBI outcome’s and perhaps protect neurons through modulating inflammatory and antioxidant pathways
متن کاملThe Role of Peroxisome Proliferator Activator Receptor Alpha in Cerebral Ischemia-Reperfusion Injury; a Review Study
Peroxisome proliferator-activated receptor alpha (PPAR-α), which belongs to the nuclear receptor family of ligand-activated transcription factors, was first described as gene regulators for metabolic pathways including lipid metabolism, insulin sensitivity, and glucose homeostasis. Were raised. This nuclear receptor is widely expressed in various tissues, providing a wide range of effects to st...
متن کاملEstrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury
Objective(s):Estrogen (E2) has neuroprotective effects on blood-brain-barrier (BBB) after traumatic brain injury (TBI). In order to investigate the roles of estrogen receptors (ERs) in these effects, ER-α antagonist (MPP) and, ER-β antagonist (PHTPP), or non-selective estrogen receptors antagonist (ICI 182780) were administered. Materials and Methods: Ovariectomized rats were divided into 10 gr...
متن کاملP27: KCNK2 and Adhesion Molecules in an in-Vitro Blood Brain Barrier Model
Two-pore domain potassium channels, like KCNK2, are known to play an important role in inflammatory diseases such as multiple sclerosis (MS). Upregulation of cellular adhesion molecules in mouse brain microvascular endothelial cells (MBMECs) of Kcnk2-/- mice resulted in elevated leukocyte trafficking into the central nervous system under inflammatory conditions. The current project aims to gain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pharmacological reports : PR
دوره 60 5 شماره
صفحات -
تاریخ انتشار 2008